https://www.dushevoi.ru/products/vodonagrevateli/protochnye/napornye/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Оказалось что хлорофилл, ароматические соединения были уже давно синтезированы, ими пользовались. Но дальше необходимо было обеспечить поглощение света, возбуждение электронное и использование энергии света в фотосинтезе. Так вот, если вы возьмёте хлорофилл, выделите в раствор, дадите ему электронное возбуждение, он поглотит квант света, и через пять на десять в минус девятой секунды энергия будет либо излучена в виде флуоресценции, либо дисипирует тепло. Так или иначе, за пять в десять минус девятой секунды энергия будет потеряна полностью. Если вы хлорофилл поместите в лист и захотите использовать эту энергию с большой эффективностью, то это нужно делать намного скорее, чем в естественное время, за которое пройдёт естественная потеря энергии. Вот почему начальный этап фотосинтеза - разделение зарядов, отрыв электрона, который потом добежит до СО2 - это девять в минус двенадцатой, минус тринадцатой секунды.
А.Г. То есть, надо успеть.
А.Р. Надо успеть, потому что иначе всё у вас, так сказать, оторвут. А дальше необходимо что сделать? Побежал электрон быстро, но дальше ведь его должны подхватить ферментные системы, которые, слава Богу, в эволюции уже существовали. Они работают намного медленнее. Времена у них десять в минус второй, в минус третьей секунды. И эти десять порядков надо замедлить. Вот почему электронный поток осуществляется через много промежуточных стадий.
На следующем рисунке показан этот электронный поток. Вот поглотился квант света - для энергии, для эмиграции энергии. Я не буду о подробностях здесь говорить. Идёт через ряд переносчиков, пластохинон мигрирует с одной стороны мембраны на другую. Здесь ситохромный комплекс. Затем ещё одна фотосистема. И выброс электрона, который уходит на надфасфат и восстанавливает его. По дороге образуется трансмембранный потенциал. Водород переносится с одной стороны мембраны на другую, получается разность потенциалов, такая электрическая батарейка заряжается. И она используется на синтез АТФ, который, как мы все хорошо знаем, это энергетическая валюта и используется во всех процессах жизнедеятельности.
Так вот в кинетическом смысле это замедление электрона до времён респектабельных, почтённых, до миллисекунды, чтобы можно было нормально использовать этот электрон. И секрет фотосинтеза вот здесь находится. И в основном это есть белковая машина. Машина по переработке энергии электронного возбуждения. Из светособирающей матрицы доставлена энергия и далее идёт переработка её в энергию разделённых зарядов. Здесь две проблемы - отрыв электрона и как этот электрон переносится на большие расстояния. Ведь толщина мембраны, примерно, 50-100 эмгстрем. И он переносится за очень короткие времена. Вот на следующем рисунке мы сейчас заглянем внутрь этого электронного центра.
Вот, посмотрите, белок. Семь альфа-спиральных столбов. Внутри эти переносчики, черненьким обозначены. А вот как бежит электрон от одного переносчика к другому, идёт перенос электрона. Достаточно большие этапы. А бежит он очень быстро. Вопрос - как это происходит, за счёт чего он происходит быстро. Обычно в химии растворов как решается вопрос? Ударения молекул, преодоление барьера, перенос электронов, и очистительные, восстановительные реакции. Здесь все переносчики погружены в белок. Они не бегают, никакой энергии активации в обычном смысле слова нет. Поэтому начальные этапы происходят быстро, и нужно понять механизм за счёт чего это происходит.
И это был принципиальный этап в понимании механизма. Оказалось, что эти процессы очень быстрые. Причём, происходит не просто какая-то диссипация энергии, а идут направленные какие-то изменения, микроконформационные. И дальше было показано, что идёт так называемый туннельный перенос электрона при низких температурах. Экспериментально оказалось, что этот перенос электрона идёт здесь при температурах минус сто градусов Цельсия. При температурах жидкого азота, даже жидкого гелия. Что принципиально? Что идёт он, в общем, с эффективностями принципиально сравнимыми с таковыми, которые наблюдаются при комнатных температурах. И, причём, ещё раз говорю, это не какая-то экзотика, которая идёт только при азотных температурах. Этот барьерный туннельный перенос происходит при всех температурах. При комнатных температурах в организованных системах он идёт даже с большей эффективностью, чем надбарьерный перенос в конденсированных системах.
А.Г. Это же квантовый эффект?
А.Р. Да. Совершенно верно. Это туннельный эффект физики, физика очень хорошо знает туннельный эффект. И здесь он происходит. Причём, идея в чём. Вот происходит туннелирование электронов из начального состояния в другое, а дальше он же может назад вернуться. А эффективность фотосинтеза начальных этапов - сто процентов. Практически сто процентов, для того, чтобы он не вернулся. За время пребывания в конечном состоянии часть энергии теряется. И за время десять в минус двенадцатой секунды он поэтому не успевает вернуться назад. И бежит дальше, ему легче в этом смысле идти дальше, чем вернуться назад. Но принципиальным является следующее. Когда приходит электрон, он не только фиксируется. Это же большая глобула, я вам показывал большой белок. Она вся претерпевает изменения вслед за приходом электрона. Вот здесь показано это схематически. Вот донор, вот аксептер. Вот у них конформация. Вот произошло туннелирование электрона. И после этого конформация начинает меняться. У донора она опять возвращается в исходное положение, чтобы принять откуда-то электрон. А у аксептера, взявшего электрон, она опять меняется, чтобы передать его дальше. Это экспериментально можно проверить. Можно поймать. Но я пока скажу, как можно себе представить аналогию. Вот, представьте себе, в цирке два акробата прыгают с одной трапеции на другую. Трапеция - это белок информационного изменения, спонтанный. А акробаты, значит, электронные. И когда эти трапеции в результате, в данном случае, свободной воли его помощника, приближаются на короткое расстояние, так, чтобы барьер для туннирования был небольшой, происходит туннирование. Акробат прыгает, хватается. Он хватается, фиксируя себя, теряя часть энергии в трении. Это потеря части энергии электрона по колебательной.
А у акробатов - трение. Проверка жестокая, намажьте лапти подсолнечным маслом, вы увидите, что получится. Но после того как он себя зафиксировал, что дальше? Характер движения трапеции меняется. Он начинает себя раскачивать. А здесь что получается? Здесь его свободная воля, так сказать, он хочет. Ему ещё тут помогают. А в туннелировании ему так устроена конформация, что новое равновесное состояние получается в осмысленной конфигурации, что достигается для облегчения дальнейшего переноса электрона. И экспериментально это можно поймать. Вот, следующий рисунок показывает, как это можно сделать. Вы запускаете систему и можете её замораживать. Можно сделать так. Вначале заморозить в темноте, а потом запустить электрон и посмотреть, как он будет там в ней гулять туда-сюда. А можно сделать по-другому. Можно начать освещать систему, она будет оживлена уже, и по дороге её замораживать. И тогда вы в зависимости от скорости замораживания, понижения температуры, от интенсивности света, то есть от числа ударов, можете поймать разные состояния.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
 магазин сантехники в одинцово 

 керамогранит 45 45