https://www.dushevoi.ru/products/aksessuary/dozator-zhidkogo-myla/ 

 

ничто не указывало на то, что между ними может существовать какая-либо связь. Однако, дерзнув предположить, что наша Вселенная имеет дополнительное пространственное измерение, Калуца обнаружил, что в действительности они глубоко связаны. Его теория утверждает, что и гравитация, и магнетизм связаны с волнами в структуре пространства. Гравитация переносится волнами, распространяющимися в нашем обычном трехмерном пространстве, тогда как электромагнетизм переносится волнами, использующими новое, свернутое измерение.
Калуца послал свою статью Эйнштейну. Вначале Эйнштейн ей очень заинтересовался. 21 апреля 1919 г. он написал Калуце ответное письмо, в котором говорил, что ему никогда не приходило в голову, что подобное объединение может быть достигнуто «с помощью пятимерного [четыре простран-
ственных измерения и одно временное] цилиндрического мира». Он также писал, что «на первый взгляд ваша идея нравится мне необычайно»4). Однако спустя неделю Эйнштейн написал Калуце еще одно письмо, которое уже содержало изрядную долю скептицизма: «Я внимательно прочитал вашу статью и нахожу ее очень интересной. Я не вижу ничего, что позволило бы отрицать такую возможность. С другой стороны, я должен признать, что приведенные аргументы не выглядят достаточно убедительными»5). Спустя более чем два года, 14 октября 1921 г., когда у Эйнштейна было достаточно времени, чтобы более полно усвоить новаторский подход, предложенный Калуцей, он снова пишет ему: «Я еще раз обдумал совет воздержаться от публикации вашей идеи об объединении гравитации и электромагнетизма, который я дал вам два года назад… Если вы хотите, я бы мог представить вашу статью в академии»6). Так, с запозданием, Калуца получил одобрение мастера.
Хотя идея была прекрасной, последующий детальный анализ гипотезы Калуцы, дополненной Клейном, показал, что она находится в серьезном противоречии с экспериментальными данными. Простейшие попытки включить в теорию электрон приводили к предсказанию отношения его массы к заряду, которое существенно отличалось от измеренных значений. Поскольку не было видно способов разрешить эту проблему, многие физики потеряли интерес к идее Калуцы. Эйнштейн и ряд других ученых продолжали исследовать возможности использования дополнительных измерений, но тем не менее это направление вскоре оказалось на периферии теоретической физики.
В действительности, идея Калуцы намного опередила свое время. 1920-е гг. ознаменовались началом бурного роста теоретических и экспериментальных исследований, посвященных изучению основных законов микромира. Теоретики были поглощены разработкой структуры квантовой механики и квантовой теории поля. Экспериментаторы были заняты детальным изучением свойств атомов и поиском новых элементарных компонентов мироздания. Теория направляла эксперимент, а эксперимент подправлял теорию — так продолжалось около полувека, и, в конечном счете, это привело к разработке стандартной модели. Неудивительно, что в это бурное и продуктивное время предположения по поводу дополнительных измерений были на обочине исследований. В эпоху, когда физики открывали мощные методы квантовой механики, дававшие предсказания, которые могли быть проверены экспериментально, изучение возможности того, что Вселенная может иметь совершенно иные свойства на расстояниях, которые слишком малы, чтобы их можно было исследовать даже с помощью самой современной техники, вызывало мало интереса.
Но, рано или поздно, из машины выходит весь пар. К концу 1960-х — началу 1970-х гг. были разработаны теоретические основы стандартной модели. К концу 1970-х — началу 1980-х гг. многие ее предсказания получили экспериментальное подтверждение, и большинство специалистов по физике элементарных частиц пришло к выводу, что подтверждение оставшейся части этой теории является только вопросом времени. Хотя некоторые важные детали оставались невыясненными, многие думали, что на основные вопросы, касавшиеся сильного, слабого и электромагнитного взаимодействий, ответы уже получены.
Пришло время вернуться к величайшей проблеме: неразрешенному противоречию между общей теорией относительности и квантовой механикой. Успех в формулировке квантовых теорий трех взаимодействий, существующих в природе, вдохновил физиков на попытку разработать такую же теорию для гравитации. После того, как многочисленные гипотезы потерпели крах, сообщество физиков стало более восприимчивым к более радикальным подходам. Теория Калуцы-Клейна, оставленная умирать медленной смертью в конце 1920-х гг., была вновь воскрешена.
Современное состояние теории Калуцы-Клейна
За шесть десятилетий, прошедших с момента первого появления гипотезы Калуцы, понимание физики значительно изменилось и углубилось. Квантовая механика была полностью сформулирована и получила экспериментальное подтверждение. Были открыты и, в значительной степени, объяснены сильное и слабое взаимодействия, которые в 1920-е гг. еще не были известны. Многие физики стали считать, что первоначальное предположение Калуцы потерпело неудачу из-за того, что он не знал об этих других взаимодействиях и был поэтому слишком консервативен в пересмотре структуры пространства. Дополнительные взаимодействия требуют дополнительных измерений. Было показано, что хотя одно новое циклическое измерение и способно решить задачу объединения общей теории относительности и электромагнетизма, оно является недостаточным.
К середине 1970-х гг. развернулись интенсивные исследования, нацеленные на разработку теорий высших размерностей со многими свернутыми измерениями. На рис. 8.7 показан пример с двумя дополнительными измерениями, свернутыми в форму мяча, т. е. сферу.
Рис. 8.7. Два дополнительных измерения, свернутые в сферу.
Как и в случае с одним циклическим измерением, эти дополнительные измерения присутствуют в каждой точке пространства, описываемого нашими обычными протяженными измерениями. (Для наглядности мы, опять же, изобразили только пример, где сферические измерения показаны в узлах регулярной сети, построенной для протяженных измерений.) Помимо предложения о другом числе дополнительных измерений, можно представить себе иные формы этих измерений. Например, на рис. 8.8 мы показали возможный вариант, в котором так же имеются два дополнительных измерения, имеющие теперь форму баранки, т.е. тора.
Рис. 8.8. Два дополнительных измерения, свернутые в баранку (тор).
Хотя это и выходит за пределы наших изобразительных возможностей, можно представить себе более сложные ситуации, в которых имеется три, четыре, пять и вообще произвольное число дополнительных пространственных измерений, свернутых в самые экзотические формы. Поскольку до сих пор не было получено экспериментального подтверждения существования всех этих измерений, существенным по-прежнему остается требование, чтобы их пространственный размер был меньше, чем самый малый масштаб длин, доступный современной технике.
Наиболее многообещающими из всех теорий с высшими размерностями были те, которые включали и суперсимметрию. Физики надеялись, что частичное сокращение наиболее интенсивных квантовых флуктуации, связанное с парами частиц-суперпартнеров, поможет смягчить противоречие между гравитацией и квантовой механикой.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
 сантехника чехов 

 чешская плитка рако