душевая кабина 120х90 с низким поддоном без крыши 

 

одна миллионная от одной миллиардной от миллиардной от миллиардной доли сантиметра (10~33)7). Таким образом, пятый уровень на рис. 5.1 схематически изображает структуру Вселенной в ультрамикроскопическом, субпланковском масштабе расстояний. Чтобы дать представление о масштабах, приведем такую иллюстрацию: если мы увеличим атом до размеров Вселенной, то планковская длина станет равной высоте среднего дерева. Итак, мы видим, что несовместимость общей теории относительности и квантовой механики проявляется только в очень глубоко запрятанном королевстве Вселенной. У читателя может возникнуть вопрос, стоит ли вообще беспокоиться по этому поводу. Мнение физического сообщества по этому вопросу отнюдь не является единым. Есть физики, которые признают существование проблемы, но предпочитают применять квантовую механику и общую теорию относительности для решения таких задач, в которых типичные расстояния намного превосходят планковскую длину. Есть, однако, и другие ученые, которые глубоко обеспокоены тем фактом, что два фундаментальных столпа, на которых держится здание современной физики, в своей основе принципиально несовместимы, и неважно, что эта несовместимость проявляется только на ультрамикроскопическом масштабе расстояний. Несовместимость, говорят они, указывает на существенный изъян в нашем понимании физического мира. Это мнение основывается на недоказуемой, но глубоко прочувствованной точке зрения, согласно которой понимание Вселенной на ее самом глубоком и наиболее элементарном уровне может дать нам ее логически непротиворечивое описание, все детали которого будут находиться в гармоничном единстве. И уж точно большинство физиков, независимо от того, какое значение это противоречие имеет для их собственных исследований, согласятся с тем, что основа наших самых глубоких теоретических представлений о Вселенной не должна представлять собой математически противоречивое лоскутное одеяло, скроенное из двух мощных, но конфликтующих теорий.
Физики неоднократно предпринимали попытки модифицировать общую теорию относительности и квантовую механику, чтобы разрешить это противоречие, однако эти попытки, среди которых были очень дерзкие и остроумные, терпели провал за провалом.
Так продолжалось до создания теории суперструн8).

Часть III. КОСМИЧЕСКАЯ СИМФОНИЯ
Глава 6 Только музыка, или Суть теории суперструн
С давних времен музыка является источником метафорических образов для тех, кто пытается разгадать тайны Вселенной. Начиная с «музыки сфер» древних пифагорейцев и до «гармонии мира», на протяжении столетий направляющих наши научные поиски, мы пытаемся понять песнь природы в величественных хороводах небесных тел и неистовой пляске субатомных частиц. С открытием теории суперструн музыкальные метафоры приобрели удивительную реальность, поскольку согласно этой теории микромир заполнен крошечными струнами, звучание которых оркеструет эволюцию мироздания. Согласно теории суперструн ветры перемен дуют через эолову арфу Вселенной.
В противоположность этому стандартная модель представляет элементарные компоненты мироздания в виде точечных образований, лишенных какой-либо внутренней структуры. Несмотря на необыкновенную мощь (как мы уже упоминали, практически все предсказания стандартной модели о свойствах микромира подтвердились с точностью до одной миллиардной от одной миллиардной доли метра, что представляет собой предел разрешающей способности современной техники), стандартная модель не смогла стать полной или «окончательной теорией», поскольку она не включает гравитационного взаимодействия. Более того, все попытки включить гравитацию в квантово-механическую формулировку этой модели закончились неудачей из-за неистовых флуктуации структуры пространства, проявляющихся на ультрамикроскопических расстояниях, т. е. на расстояниях, меньших планковской длины. Это неразрешенное противоречие явилось побудительным мотивом для поиска более глубокого понимания природы. В 1984 г. физик Майкл Грин, работавший в то время в колледже Королевы Марии, и Джон Шварц из Калифорнийского технологического института впервые представили убедительные доказательства того, что теория суперструн (или, кратко, теория струн) может дать такое понимание.
Теория струн предлагает оригинальное и глубокое изменение теоретического описания свойств Вселенной на ультрамикроскопическом уровне — изменение, которое, как постепенно осознают физики, модифицирует эйнштейновскую общую теорию относительности, делая ее полностью совместимой с законами квантовой механики. Согласно теории струн элементарные компоненты Вселенной не являются точечными частицами, а представляют собой крошечные одномерные волокна, подобные бесконечно тонким, непрерывно вибрирующим резиновым лентам. Здесь важно не дать названию ввести нас в заблуждение. В отличие от обычных струн, состоящих из молекул и атомов, струны, о которых говорит теория струн, лежат глубоко в самом сердце материи. Теория струн утверждает, что именно они представляют собой ультрамикроскопические компоненты, из которых состоят частицы, образующие атомы. Струны, являющиеся объектом теории струн, столь малы — в среднем их размер сопоставим с планковской длиной, — что даже при изучении с помощью самого мощного оборудования они выглядят точечными.
Однако уже простая замена точечных частиц струнами в качестве фундаментальных компонентов мироздания ведет к далеко идущим последствиям. Первое и самое главное состоит в том, что теория струн, по-видимому, разрешает противоречие между общей теорией относительности и квантовой механикой. Как мы увидим ниже, пространственная протяженность струн является новым ключевым звеном, позволяющим создать единую гармоничную систему, объединяющую обе теории. Во-вторых, теория струн действительно представляет объединенную теорию, поскольку в ней все вещество и все взаимодействия обязаны своим происхождением одной фундаментальной величине — колеблющейся струне. Наконец, как будет показано более подробно в последующих главах, помимо этих блестящих достижений, теория струн еще раз радикально изменяет наши представления о пространстве-времени1).
Краткая история теории струн
В 1968 г. молодой физик-теоретик Габриэле Венециано корпел над осмыслением многочисленных экспериментально наблюдаемых характеристик сильного ядерного взаимодействия. Венециано, который в то время работал в ЦЕРНе, Европейской ускорительной лаборатории, находящейся в Женеве (Швейцария), трудился над этой проблемой в течение нескольких лет, пока однажды его не осенила блестящая догадка. К большому своему удивлению он понял, что экзотическая математическая формула, придуманная примерно за двести лет до этого знаменитым швейцарским математиком Леонардом Эйлером в чисто математических целях — так называемая бета-функция Эйлера, — похоже, способна описать одним махом все многочисленные свойства частиц, участвующих в сильном ядерном взаимодействии. Подмеченное Венециано свойство давало мощное математическое описание многим особенностям сильного взаимодействия; оно вызвало шквал работ, в которых бета-функция и ее различные обобщения использовались для описания огромных массивов данных, накопленных при изучении столкновений частиц по всему миру.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
 https://sdvk.ru/Sanfayans/Unitazi/S_gorizontalnym_vypuskom/ 

 Dual Gres Bergel