раковина для тумбы 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z


 

Высшая биологическая форма не исчерпывается суммой низших форм, но сводится к ним в структурном отношении, так же как живое сводится к химии и физике, но не исчерпывается ими в качественном отношении.
Длительный путь исследования живого привел к некоторым аксиоматическим понятиям, на которых строится вся пирамида разнообразия форм живого. Медников Б.М.[78] их сформулировал таким образом:
1. Все живые организмы должны быть единством фенотипа и программы для его построения (генотипа) передающегося по наследству из поколения в поколение.
2. Наследственные молекулы синтезируются матричным путем. В качестве матрицы, на которой строится ген будущего поколения, используется ген предыдущего поколения.
3. В процессе передачи из поколения в поколение генетические программы в результате многих причин изменяются случайно и не направлено, и лишь случайно эти изменения оказываются приспособительными.
4. Случайные изменения генетических программ при становлении фенотипов многократно усиливаются и подвергаются отбору условиями внешней среды.
Мы считаем, что необходимо добавить пятую аксиому:
5. Живые организмы есть необходимая часть эволюционирующего Универсума в сторону увеличения скорости и качественно отличных способов переработки информационных потоков.
В этих аксиомах неявно утверждаются следующие принципы:
- носителем информации отдельности (индивида) живого является молекулярная форма организации материи;
- эта информация (генотип) обладает свойством относительной устойчивости и изменчивости;
- фенотип есть реализация генотипа в конкретных космофизических условиях.
Абсолютизация третьей аксиомы некоторыми исследователями подвергается сомнению; считается, что наряду со случайными мутациями наблюдается направленный мутационный процесс, особенно проявляющийся в период перед глобальными катастрофами, резко изменяющими среду обитания для предшествующих видов [153].
Граничной формой между живыми организмами и косной природой можно считать вирусы. Хотя вирусы обладают собственным аппаратом переноса информации о составе субъединиц своего организма, они не имеют собственного механизма его поддержания и функционирования. Для активации программы вируса требуется среда, в которой структурные элементы механизма воспроизводства были бы представлены полностью.
Существует две основные версии возникновения генетического способа поддержания и развития живого на земле. Одна из них постулирует автохтонное для планеты происхождение программы саморазвивающихся систем, другая - экзогенного происхождения, т.е. привнесения этой программы извне (панспермия). В пользу последней приводятся расчеты совершенной недостаточности времени существования Солнечной системы для случайного возникновения аппарата передачи информации и его реализации. В пользу первой наличие неорганических матриц (кремнистые глиноземы), на которых возможен синтез олигопептидов из отдельных аминокислот, и некоторые другие факторы.

ГОМЕОСТАТИЧЕСКАЯ МОДЕЛЬ РАБОТЫ ГЕНЕТИЧЕСКОГО АППАРАТА
Одной из важных характеристик двадцатого века можно считать прорыв в знаниях о структурных механизмах воспроизводства и передачи биологической информации по наследству.
Ген - рождающий. Ген - это участок молекулы ДНК, ответственный за конкретный признак. В функции гена входит регуляция синтеза белка как структурного элемента признака и регуляция синтеза нуклеиновых кислот, являющихся материальной основой переноса информации. Последнее имеет два сходных, но качественно разных механизма, называемых транскрипция и репликация. Транскрипция - это перезапись информации о признаке на носитель, который служит непосредственной матрицей сборки последовательности аминокислот в молекуле белка (иРНК). Репликация - это копирование, размножение точной копии носителя генетической информации (ДНК). Перевод кода информационной РНК в линейную последовательность остатков аминокислот (в полипептид) называют трансляцией. Трансляцию обеспечивают транспортные РНК и рибосомы.

Обобщенная гомеостатическая модель работы гена
Кратко изложим известные механизмы функционирования гена и представим их в виде гомеостатической модели, описанной выше.
Обобщенно ген состоит из: 1 - участка, который называется геном регулятором, управляющим началом транскрипции и 2 - участка, называемого структурным геном, на котором и происходит собственно транскрипция. Структурный ген-обладает пусковым промежутком, расположенным вначале места считывания информации. Этот промежуток получил название «оперон». Если ген регулятор может находиться пространственно на другом месте хромосомы и даже на другой хромосоме, то оперон обязательно находится в начале участка транскрипции. Ген-регулятор специфичен по отношению к структурному гену. Ген-регулятор считывает информацию о белке, называемом репрессор. Синтезированный белок-репрессор может быть активным и сам взаимодействовать с опероном, подавляя транскрипцию, в противном случае он должен предварительно связаться с другим веществом - «эффектором» и уже этот комплекс подавляет транскрипцию. Когда белок-репрессор сам является активным по отношению к оперону, его инактивирует эффектор.
Активация работы гена регулятора может происходить либо за счет воздействия конечного продукта работы всего гена, либо через продукты метаболизма этого белка.

Рис.7. Схема регуляции активности гена [3].
Итак, у нас есть все предпосылки для того, чтобы вышеуказанную схему, не изменяя сущности материальных процессов, видоизменить в схему информационных потоков и их взаимодействий на принципах гомеостатического регулирования. Информационные потоки функционально можно представить как два встречно направленных потока. Первый - из внешней среды внутрь области гена. Внешняя среда воздействует на оперон гена-регулятора и оперон структурного гена, включая или выключая его активность. Второй поток это воздействие информации продуцируемой внутри гена на собственные внутренние структуры; опять же на опероны гена регулятора и структурного гена. Эффектор может оказаться веществом, которое синтезируется другими генами или собственной продукцией. Вся продуцируемая информация поступает в окружающую среду и взаимодействует с рецепторами входов на конкурсной основе, т.о. при передаче информации необходимо учитывать скорость диффузии и концентрацию вещества переносчика.
I(t) = F(d,k)
Накладывая обе функциональные схемы друг на друга мы получим уже известную нам модель гомеостата (рис.8).

Рис.8. Модель гомеостатической схемы работы гена.
Обозначения: О - оперон, Б - белковая молекула, R - рибосома
В этой схеме интересно отметить тот момент, что даже внутри гомеостата происходит неоднократная перекодировка информационных потоков с одного вида носителя на другой. Продуктом гена-регулятора и структурного гена является иРНК, чтобы информация, записанная на ней, достигла своего адресата должна произойти трансляция через рибосому и образоваться белковая форма.
Гомеостатическая модель механизма транскрипции
Транскрипция информационной РНК происходит на одной из нитей двойной ДНК. Для этого нити ДНК в этом месте должны быть расплетены.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
 аксессуары keuco для ванной комнаты 

 Alma Ceramica Парус