https://www.dushevoi.ru/products/mebel-dlja-vannoj/mojdodyry/ 

 

В истории современной физики примерами тому могут служить философский анализ понятий пространства и времени, а также анализ операциональных оснований физической теории, проделанный Эйнштейном и предшествовавший перестройке представлений об абсолютном пространстве и времени классической физики.
Философско-методологические средства активно используются при перестройке оснований науки и в той ситуации, когда доминирующую роль играют факторы междисциплинарного взаимодействия. Особенности этого варианта научной революции состоят в том, что для преобразования картины реальности и норм исследования некоторой науки в принципе не обязательно, чтобы в ней были зафиксированы парадоксы. Преобразование её оснований осуществляется за счёт переноса парадигмальных установок и принципов из других дисциплин, что заставляет исследователей по-новому оценить ещё не объяснённые факты (если раньше считалось, по крайней мере большинством исследователей, что указанные факты можно объяснить в рамках ранее принятых оснований науки, то давление новых установок способно породить оценку указанных фактов как аномалий, объяснение которых предполагает перестройку оснований исследования). Обычно в качестве парадигмальных принципов, «прививаемых» в другие науки, выступают компоненты оснований лидирующей науки. Ядро её картины реальности образует в определённую историческую эпоху фундамент общей научной картины мира, а принятые в ней идеалы и нормы обретают общенаучный статус. Философское осмысление и обоснование этого статуса подготавливает почву для трансляции некоторых идей, принципов и методов лидирующей дисциплины в другие науки.
Внедряясь в новую отрасль исследования, парадигмальные принципы науки затем как бы притачиваются к специфике новой области, превращаясь в картину реальности соответствующей дисциплины и в новые для неё нормативы исследования. Показательным примером в этом отношении могут служить революции в химии XVII – первой половине XIX столетия, связанные с переносом в химию из физики идеалов количественного описания, представлений о силовых взаимодействиях между частицами и представлений об атомах. Идеалы количественного описания привели к разработке в химии XVII – XVIII вв. конкретных методов количественного анализа, которые, в свою очередь, взрывали изнутри флогистонную концепцию химических процессов. Представления о силовых взаимодействиях и атомистическом строении вещества, заимствованные из механической картины мира, способствовали формированию новой картины химической реальности, в которой взаимодействия химических элементов интерпретировались как действие «сил химического сродства» (А. Лавуазье, К. Бертолле), а химические элементы были представлены в качестве атомов вещества (первый гипотетический вариант этих представлений в химии был предложен Р. Бойлем ещё в XVII столетии, а в начале XIX в. благодаря работам Дальтона атомистические идеи получили эмпирическое обоснование и окончательно утвердились в химии).
Парадигмальные принципы, модифицированные и развитые применительно к специфике объектов некоторой дисциплины, затем могут оказать обратное воздействие на те науки, из которых они были первоначально заимствованы. В частности, развитые в химии представления о молекулах как соединении атомов затем вошли в общую научную картину мира и через неё оказали значительное воздействие на физику в период разработки молекулярно-кинетической теории теплоты.
На современном этапе развития научного знания в связи с усиливающимися процессами взаимодействия наук способы перестройки оснований за счёт «прививки» парадигмальных установок из одной науки в другие все активнее начинают влиять на внутридисциплинарные механизмы интенсивного роста знаний и даже управлять этими механизмами.
Научная революция как выбор новых стратегий исследования
Перестройка оснований исследования означает изменение самой стратегии научного поиска. Однако всякая новая стратегия утверждается не сразу, а в длительной борьбе с прежними установками и традиционными видениями реальности.
Процесс утверждения в науке её новых оснований определён не только предсказанием новых фактов и генерацией конкретных теоретических моделей, но и причинами социокультурного характера.
Новые познавательные установки и генерированные ими знания должны быть вписаны в культуру соответствующей исторической эпохи и согласованы с лежащими в её фундаменте ценностями и мировоззренческими структурами.
Перестройка оснований науки в период научной революции с этой точки зрения представляет собой выбор особых направлений роста знаний, обеспечивающих как расширение диапазона исследования объектов, так и определённую скоррелированность динамики знания с ценностями и мировоззренческими установками соответствующей исторической эпохи. В период научной революции имеются несколько возможных путей роста знания, которые, однако, не все реализуются в действительной истории науки. Можно выделить два аспекта нелинейности роста знаний.
Первый из них связан с конкуренцией исследовательских программ в рамках отдельно взятой отрасли науки. Победа одной и вырождение другой программы направляют развитие этой отрасли науки по определённому руслу, но вместе с тем закрывают какие-то иные пути её возможного развития.
Рассмотрим в качестве примера борьбу двух направлений в классической электродинамике Ампера-Вебера, с одной стороны, и Фарадея-Максвелла, с другой. Максвелл, создавая теорию электромагнитного поля, длительное время не получал новых результатов, по сравнению с теми, которые давала электродинамика Ампера-Вебера. Внешне все выглядело как вывод уже известных законов в новой математической форме. Лишь в конечном итоге, открыв фундаментальные уравнения электромагнетизма, Максвелл получил знаменитые волновые решения и предсказал существование электромагнитных волн. Их экспериментальное обнаружение привело к триумфу максвелловского направления и утвердило представления о близкодействии и силовых полях как единственно верную основу физической картины мира.
Однако в принципе эффекты, которые интерпретировались как доказательство электромагнитных волн, могли быть предсказаны и в рамках амперовского направления. Известно, что в 1845 г. К. Гаусс в письме к В. Веберу указывал, что для дальнейшего развития теории Ампера-Вебера следует в дополнение к известным силам действия между зарядами допустить существование других сил, распространяющихся с конечной скоростью. Г. Риман осуществил эту программу и вывел уравнение для потенциала, аналогичное лоренцовским уравнениям для запаздывающих потенциалов. В принципе это уравнение могло бы лечь в основу предсказания тех эффектов, которые были интерпретированы в парадигме максвелловской электродинамики как распространение электромагнитных волн. Но этот путь развития электродинамики предполагал физическую картину мира, в которой постулировалось распространение сил с различной скоростью в пустом пространстве. В такой картине мира отсутствует эфир и представление об электромагнитных полях. И тогда возникает вопрос: как могла бы выглядеть в этой нереализованной линии развития физики теория электронов, каков был бы путь к теории относительности.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
 https://sdvk.ru/Smesiteli_dlya_vannoy/Germaniya/ 

 плитка под кирпич для ванной