https://www.dushevoi.ru/products/smesiteli/dlya-vanny/na-bort/ 

 

Такая концепция основывалась на идеализирующем допущении, что при измерениях, посредством которых выявляются пространственно-временные характеристики тел, свойства часов и линеек (жёстких стержней) физической лаборатории не меняются от присутствия самих тел (масс) и не зависят от относительного движения лаборатории (системы отсчёта).
Только та реальность, которая соответствовала описанной схеме измерений (а ей соответствовали простые динамические системы), принималась в ньютоновской картине мира за природу «саму по себе».
Показательно, что в современной физике приняты более сложные схемы измерения. Например, в квантовой механике элиминируется первое требование ньютоновской схемы, а в теории относительности – второе. В связи с этим вводятся и более сложные предметы научных теорий.
При столкновении с новым типом объектов, структура которых не учтена в сложившейся картине мира, познание меняло эту картину. В классической физике такие изменения осуществлялись в форме введения новых онтологических представлений. Однако последние не сопровождались анализом абстрактной схемы измерения, которая составляет операциональную основу вводимых онтологических структур. Поэтому каждая новая картина физической реальности проходила длительное обоснование опытом и конкретными теориями, прежде чем получала статус картины мира. Современная физика дала образцы иного пути построения знаний. Она строит картину физической реальности, эксплицируя схему измерения, в рамках которой будут описываться новые объекты. Эта экспликация осуществляется в форме выдвижения принципов, фиксирующих особенности метода исследования объектов (принцип относительности, принцип дополнительности).
Сама картина на первых порах может не иметь законченной формы, но вместе с принципами, фиксирующими «операциональную сторону» видения реальности, она определяет поиск математических гипотез. Новая стратегия теоретического поиска сместила акценты и в философской регуляции процесса научного открытия. В отличие от классических ситуаций, где выдвижение физической картины мира прежде всего было ориентировано «философской онтологией», в квантово-релятивистской физике центр тяжести был перенесён на гносеологическую проблематику. Поэтому в регулятивных принципах, целенаправляющих поиск математических гипотез, явно представлены (в конкретизированной применительно к физическому исследованию форме) положения теоретико-познавательного характера (принцип соответствия, простоты и т. д.).
В ходе математической экстраполяции исследователь создаёт новый аппарат путём перестройки некоторых уже известных уравнений. Физические величины, входящие в такие уравнения, переносятся в новый аппарат, где получают новые связи, а значит, и новые определения. Соответственно этому заимствуются из уже сложившихся областей знания абстрактные объекты, признаки которых были представлены физическими величинами. Абстрактные объекты погружаются в новые отношения, благодаря чему наделяются новыми признаками. Из этих объектов создаётся гипотетическая модель, которая неявно вводится вместе с новым математическим аппаратом в качестве его интерпретации.
Такая модель, как правило, содержит неконструктивные элементы, а это может привести к противоречиям в теории и к рассогласованию с опытом даже перспективных математических аппаратов.
Таким образом, специфика современных исследований состоит не в том, что математический аппарат сначала вводится без интерпретации (неинтерпретированный аппарат есть исчисление, математический формализм, который принадлежит математике, но не является аппаратом физики). Специфика заключается в том, что математическая гипотеза чаще всего неявно формирует неадекватную интерпретацию создаваемого аппарата, а это значительно усложняет процедуру эмпирической проверки выдвинутой гипотезы. Сопоставление следствий из уравнений с опытом всегда предполагает интерпретацию величин, которые фигурируют в уравнениях. Поэтому опытом проверяются не уравнения сами по себе, а система: уравнения плюс интерпретация. И если последняя неадекватна, то опыт может выбраковывать вместе с интерпретацией весьма продуктивные математические структуры, соответствующие особенностям исследуемых объектов.
Чтобы обосновать математическую гипотезу опытом, недостаточно просто сравнивать следствия из уравнений с опытными данными. Необходимо каждый раз эксплицировать гипотетические модели, которые были введены на стадии математической экстраполяции, отделяя их от уравнений, обосновывать эти модели конструктивно, вновь сверять с созданным математическим формализмом и только после этого проверять следствия из уравнений опытом.
Длинная серия математических гипотез порождает опасность накопления в теории неконструктивных элементов и утраты эмпирического смысла величин, фигурирующих в уравнениях. Поэтому в современной физике на определённом этапе развития теории становятся необходимыми промежуточные интерпретации, обеспечивающие операциональный контроль за создаваемой теоретической конструкцией. В системе таких промежуточных интерпретаций как раз и создаётся конструктивнообоснованная теоретическая схема, обеспечивающая адекватную семантику аппарата и его связь с опытом.
Все описанные особенности формирования современной теории можно проиллюстрировать, обратившись к материалу истории квантовой физики.
Квантовая электродинамика является убедительным свидетельством эвристичности метода математической гипотезы. Её история началась с построения формализма, позволяющего описать «микроструктуру» электромагнитных взаимодействий.
Создание указанного формализма довольно отчётливо расчленяется на четыре этапа. Вначале был введён аппарат квантованного электромагнитного поля излучения (поле, не взаимодействующее с источником). Затем на втором этапе, была построена математическая теория квантованного электронно-позитронного поля (было осуществлено квантование источников поля). На третьем этапе было описано взаимодействие указанных полей в рамках теории возмущений в первом приближении. Наконец, на заключительном, четвёртом этапе был создан аппарат, характеризующий взаимодействие квантованных электромагнитного и электронно-позитронного полей с учётом последующих приближений теории возмущений (этот аппарат был связан с методом перенормировок, позволяющим осуществить описание взаимодействующих полей в высших порядках теории возмущений).
В период, когда уже был пройден первый и второй этапы построения математического формализма теории и начал успешно создаваться аппарат, описывающий взаимодействие свободных квантованных полей методами теории возмущений, в самом фундаменте квантовой электродинамики были обнаружены парадоксы, которые поставили под сомнение ценность построенного математического аппарата. Это были так называемые парадоксы измеримости полей. В работах П. Иордана, В. А. Фока и особенно в совместном исследовании Л. Д. Ландау и Р. Пайерлса было показано, что основные величины, которые фигурировали в аппарате новой теории, в частности, компоненты электрической и магнитной напряжённости в точке, не имеют физического смысла.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
 душевые кабинки 

 Евро-Керамика Метлах