https://www.dushevoi.ru/products/tumby-s-rakovinoy/dvojnaya/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Основным структурно-функциональным элементом го-
меостата, выполняющим сразу несколько противоречивых функций, будут
клетки в динамике их развития и функционирования.
Модель ткани железистого эпителия можно представить в следующем виде
(рис.12):
Рис. 12. Гомеостат функционирующей ткани железистого эпителия. -гиб-
нущие клетки; D - дифференцирующиеся клетки; К - камбий.

Патологии тканевых гомеостатов
Патологии тканевых гомеостатов связаны с нарушениями в системах уп-
равления динамикой клеточной популяции. Существует два класса источников
патологии: 1 - внутритканевые, связанные с внутриклеточным нарушением
регуляции считывания генетической информации, и 2 - внетканевые, эпиге-
нетические - индуцирующие активацию считывания архивированной информа-
ции. С формальной точки зрения для гомеостата это означает либо появле-
ние (разрыв) связей внутри гомеостата, либо появление на входе новых ин-
формационных потоков из внешней среды.
Внутриклеточные механизмы регуляции митотической пролиферации клеток
непосредственно связаны с функцией клеточных онкогенов, которые стимули-
руют митотические деления клеток и повышают их мутабельность [122].
В простейшем случае система регуляции клеточного онкогена представле-
на тремя генами: собственно онкогеном, геном-репрессором и геном-модифи-
катором. Активно функционирующий ген-репрессор блокирует функцию онкоге-
на. Ген-модификатор изменяет уровень функциональной активности онкогена,
но не способен включать или выключать онкоген.
Полное торможение онкогена в клетках определенной ткани должно приво-
дить к торможению митотических делений клеток и прекращению роста ткани
(аплазия). В эмбриональный период нарушение такого рода является ле-
тальным событием.
Снижение функциональной активности онкогена в определенной ткани
должно приводить к недоразвитию этой ткани, к ее гипоплазии. В эмбриоге-
незе гипопластические процессы могут приводить к недоразвитию органов и
являются полулетальным событием.
Повышение активности онкогена при прочих равных условиях должно при-
водить к более активной стимуляции митотических делений клеток, что спо-
собствует гиперпластическому развитию ткани. В эмбриогенезе процесс ги-
перплазии тканей может приводить к гибели личинки, т.е. является полуле-
тальным событием.
Беспредельная, перманентная активация онкогена приводит к непрерывной
стимуляции митотической пролиферации клеток. В эмбриогенезе беспрерывный
рост ткани приводит к летальному событию. В постнатальном периоде бесп-
рерывная стимуляция митотических делений клеток в сочетании с процессом
мутационной их изменчивости обеспечивают беспрерывное накопление популя-
ции клеток, обладающих необходимыми и достаточными признаками клеток
злокачественной опухоли.
Гены-модификаторы изменяют уровень активности онкогена и при его пов-
реждении либо нормализуют функцию онкогена, либо, напротив, усиливают
эффект имеющегося нарушения. Так, в эмбриогенезе гены- модификаторы мо-
гут либо нормализовать функцию поврежденного онкогена и тем обеспечить
развитие, либо усилить полулетальный эффект мутационно поврежденного он-
когена. Селекция на жизнеспособность линии животных, которая несет пов-
режденный онкоген с полулетальной мутацией, приводит к отбору особей с
активно функционирующим геном-модификатором, что и обеспечивает нормали-
зацию развития эмбрионов.
Активно функционирующие гены-модификаторы, накопленные в ходе селек-
ции, выполняют по существу функцию компенсаторного комплекса генов, ко-
торый при скрещивании такой линии животных с диким типом, обеспечивает
по современным представлениям эффект гетерозиса за счет гиперфункции в
клетках гибридного организма компенсаторного комплекса генов.
Онкоген и регуляторные гены организованы по принципу полимерного ге-
на: каждый из них представлен в геноме группой до 10-12 аллелей, которые
взаимно компенсируют функцию друг друга. Такая полимерная организация, в
частности гена-репрессора, позволяет с единых генетических позиций
объяснить как многостадийный, так и двухстадийный канцерогенез. При на-
личии 5-6 существенно необходимых стадий развития новообразования (нап-
ример, лейкоз) можно предполагать последовательное повреждение по типу
генных мутаций 5-6 отдельных аллелей полимерного гена-репрессора. При
двухстадийном варианте развития злокачественной опухоли (например, опу-
холи солидного типа) можно допустить повреждение значительной части ал-
лелей полимерного гена-репрессора в результате двух последовательных ре-
цессивных мутаций, связанных с хромосомными или геномными реорганизация-
ми.
ГОМЕОСТАТИЧЕСКАЯ МОДЕЛЬ ТКАНЕВЫХ СИСТЕМ (ОРГАНОВ)

Тканевые системы (органы) формируются в процессе эволюционного разви-
тия для выполнения жизненно важных целей функционирования единого орга-
низма. Здесь мы обнаруживаем явные параллели в целях функциональных ор-
ганизаций органов с клеточными органеллами в одноклеточных организмах.
Единство целей разных интеграционных уровней создает функциональные ана-
логи точно также, как простейшая форма единичного фрактала повторяется
на определенных стадиях интеграции множества единичных однотипных по
форме фракталов.
Движущие силы индивидуального развития создаются по мере дифференци-
ровки зародыша в результате взаимодействия продуктов этой дифференциров-
ки. Взаимодействие разных частей ведет к новым дифференцировкам и
дальнейшим взаимодействиям. Устойчивость организации покоится не на
прочности каких-либо структур, а на сложности системы взаимодействий
(корреляций) и на регуляторном их характере [51]. Шмальгаузен подчерки-
вает, что взаимоотношения между соседними частями растущего организма
сопровождаются обменом продуктами метаболизма, оказывающего контрольные,
регуляторные функции формообразовательного процесса. Продукты орга-
но-специфического метаболизма служат для детерминации менее дифференци-
рованных соседних зачатков. Система связи используется в одном направле-
нии для передачи директивной информации (детерминация формообразования)
и в другом направлении для передачи обратной информации (контроль формо-
образования). Таким образом, создаются сложные системы взаимодействия
частей, являющиеся основой регулируемого саморазвития [51, c. 329].
Практически еще в начале 60-х годов выдающийся ученый И.И. Шмальгау-
зен описал в общем виде принцип работы гомеостатической системы в виде
сложной системы авторегуляционных циклов передачи и реализации информа-
ции (наследственной и ненаследственной) в процессе индивидуального раз-
вития организма.
Гистологически орган состоит из системы разных тканевых образований,
подчиненных выполнению единой функции. Входная информация преобразуется
в каждой из тканей в соответствующий только ее специфике носитель. Сово-
купность и пространственно-временная последовательность носителей преоб-
разованной входной информации есть отраженная органом (гомеостатом) ин-
формация, которая выражается в активном воздействии на внешнюю среду.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
 сантехника Москве недорого 

 плитка марацци каталог