купить зеркало с подсветкой 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Произошел сбой в передаче информации.
С.Ч. Да, конечно. И в этом смысле, это классический, то есть наиболее яркий, пример того, как план выражения - структура и-РНК - и план содержания - метаболические процессы - взаимно трансцендентны, не детерминируются друг другом, в частности, не детерминируются физическим субстратом, а детерминируются просто тем, какие именно триплеты присутствуют в конкретной т-РНК.
А.Г. То есть сигнал идет один и тот же, а воспринимается по-разному - я говорю с одним человеком, и он меня понимает, я говорю то же самое другому человеку, и он меня отказывается понимать. В результате так происходит?
С.Ч. Да, но это уже будет на уровне аналогии.
А.Г. Но я для себя пытаюсь усвоить, разложить по полочкам.
А.С. Что касается рака, то с позиций биосемиотики я его коснусь чуть позже.
А сейчас - несколько слов о генах вообще. Гены как таковые, в принципе, можно тоже рассматривать как само- и взаимосогласованные интерпретируемые знаки в системах. Это - вопрос дискутабельный: Джеспер Хоффмейер, очень известный датский биосемиотик, в переписке со мною это отрицал, процитировав фразу генетика Левонтина: «Genes do nothing». Но мне ситуация представляется обратной. Ведь есть удивительные факты, ярко демонстрирующие знаковую, семиотическую природу генов. До сих пор казалось очевидным, что, поскольку в ядрах клеток всех организмов ДНК-белковый код универсален, то каждый ген содержит однозначную инфомацию о кодируемых им функциях. Но вот прочитали разные геномы. В частности, оказалось, что у человека и у дрожжей последовательности нуклеотидов некоторых важных работающих генов почти идентичны. И вот что поразительно. У человека мутации в одном из них вызывают семейную сердечную миопатию, в другом - наследственную глухоту, в третьем - кожный рак ксеродерму, в четвёртом - неполипозный рак кишечника, в пятом - специфические поражения печени. А ведь дрожжи - это одноклеточные грибы; у них нет ни сердца, ни ушей, ни кожи, ни кишок, ни печени! Одни и те же гены у них проявляются совсем не так, как у нас. Иными словами, в разных организмах, дрожжах и человеке, одни и те же знаки - гены интерпретируются совершенно по-разному, в зависимости от организации самих интерпретирующих систем - геномов, клеток, организмов.
Но гены можно рассматривать не только как интерпретируемые знаки и/или их совокупности, но и как системы, сами способные интерпретировать другие знаки, в частности и другие гены. Так, опероны, открытые Жакобом, Вольманом и Моно ещё в начале 1960-х гг., - это небольшие генные системы, сами структуры которых придают им свойства своеобразных логических ячеек: они сами могут как бы давать тот или иной самосогласованный, адекватный ответ, - запуская работу своих генов, кодирующих специальные небольшие наборы ферментов - в ответ на наличие или отсутствие их специфического субстрата (например, сахара лактозы), или же на потребность в их специфическом продукте (например, в аминокислоте триптофане). В общем, каждый конкретный оперон - это самодостаточная система, некая логическая ячейка. А состоит он всего-то из специфического участка ДНК, кодирующего нужные ферменты, ферментов синтеза РНК, запускающих его работу, и ферментов, кодируемых им самим.
Если же говорить о генах вообще, то мы можем увидеть, как в целом в течение эволюции они как бы учатся интерпретировать сигналы. Если из современных организмов в порядке их сложности построить ряд, соответствующий общим эволюционным представлениям, и сравнить нуклеотидные последовательности в ДНК, составляющие их разные гены и целые геномы, то видно, как возрастают следующие показатели. (1). Общие величины геномов.
Так, у кишечной палочки - около 3.6 млн. нуклеотидов, в них - чуть более 3.2 тыс. генов, у нас - 3.2 млрд. нуклеотидов и примерно 40 тыс. генов. Промежуточные по сложности организмы - дрожжи, круглые черви, дрозофилы - по этим показателям занимают соответствующие промежуточные положения. (2) Разнообразие ДНК-текстов. (3). Среднее количество нуклеотидов на ген, то есть избыточность текста и длины регуляторных участков, которые интерпретируют сигналы, управляющие работой генов. Средняя длина гена у всех организмов - примерно 1000 нуклеотидов. В то же время, если поделить величину генома на количество генов, у бактерий на ген приходится чуть более тысячи нуклеотидов, а у человека - более 32 тысяч. Прочие названные геномы тоже занимают соответствующие места на этой шкале. Иными словами, чем сложнее организм, тем у него больше среднее количество знаков ДНК-текста, обусловливающих «ответ» - работу - одного гена. (5). В связи с этим возрастает как бы усреднённая рецептивность генов: чем сложнее организм, тем у его гена в среднем больше и длина его регуляторных зон, и их разнообразие, и количество факторов, которые они могут связать, включая, выключая или варьируя работу гена. Иными словами, возрастает количество интерпретируемых сигналов и их взаимодействий. (6). Поэтому многие из этих «входов» всё более можно рассматривать как знаки в семиотическом понимании: один и тот же «входной» регуляторный фактор разные гены интерпретируют по-разному, в зависимости и от других факторов - производя свои специфические генные продукты и признаки клетки и организма. (7). Всё это образует всё более сложные сети процессов - всё более интерпретирующих знаки и являющихся ими, а не просто являющихся сигналами и их сочетаниями или однозначно отвечающими на них. (8). Появляется всё больше разнообразных мобильных генетических элементов; у бактерий их мало, и они - одиночные, а у человека разнообразные участки, сходные с ними, составляют около 30% генома. (9) Для самых «продвинутых» генов высших организмов - многие из этих генов особенно сильно работают в клетках мозга и некоторых других важных органов - характерен так называемый альтернативный спласинг: с одного и того же гена клетка и организм строят несколько разных белков с разными функциями - по-разному нарезая его мРНК-копии. Регуляторные системы разных клеток, в разных контекстах, по-разному интерпретируют, как знак, один и тот же ген, одну и ту же его мРНК. (10). На мРНК сложных организмов есть свои сигналы - определяющие, сколько времени, сколько раз эту мРНК можно «прокручивать» на рибосомах, синтезируя с неё белок, и вообще как её использовать. Эти сигналы и знаки транспорта и работы самой мРНК сейчас интенсивно изучают. В общем, чем сложнее организм, тем на единицу функции (а ген - это элементарная наследуемая единица биологической функции) приходится гораздо больше информационных и знаковых входов - образно говоря, даже каждый ген больше понимает и умеет.
На слова Левонтина, цитированные Хоффмайером - «Genes do nothing» («Гены ничего не делают»), можно возразить следующее. Точно так же и мы в отрыве от всей взрастившей нас культуры (включая литературу), от всего того, что мы приняли с родителями, с книгами, с образованием, с друзьями, коллегами, от жизненных ценностей и целей, мы тоже «ничего не делаем» - «We do nothing». Значит, ген в контексте всё более сложной клетки может всё больше, а в контексте всё более сложного многоклеточного организма - тем более. И в связи с этим - (11): Повышается тотальная надежность генома, его помехоустойчивость как целого. Так, в геноме кишечной палочки могут мутировать безвредно для неё лишь 50% генов, а 50% - это потенциально летальные гены.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
 питерские полотенцесушители водяные 

 керамогранит италон отзывы