https://www.dushevoi.ru/products/dushevye-poddony/100x100/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Если время не реально, рассуждал он, то не должны ли мы отрицать в таком случае то, что мы завтракали до обеда, а не после него? Если реальность духовна, то не следует ли отсюда, что столы и стулья гораздо больше похожи на нас, людей, чем мы считаем? Можно ли сомневаться в том, что существуют материальные объекты, если очевидно, что вот одна рука, а вот вторая? И дальше, в том же духе.
Несмотря на внешнюю, по большей части наигранную наивность своей позиции, Мур был одним из выдающихся философов первой половины XX в. Еще в 1903 г. он опубликовал статью «Опровержение идеализма», в которой подверг скрупулезному логическому анализу тезис Дж. Беркли «Esse est percipi» (быть – значит быть воспринимаемым (лат.), который считал фундаментальным для любого идеализма. В частности, автор анализирует ощущение синего цвета, сопоставляя его с ощущением зеленого цвета. Он заявляет, что в каждом ощущении имеются две составные части: одна – общая всем ощущениям – это то, что оно есть факт сознания, и другая – то, что оно представляет объект этого сознания, т. е. сам синий цвет, который от сознания не зависит, а дается ему или же «входит в него» как особый объект.
Дж. Мур заложил основы сразу двух философских течений: реализма, согласно которому в познавательном акте объект непосредственно присутствует в сознании, и аналитической философии. Начинать философию Мур призывал с анализа значения наших высказываний. При этом неизбежно вставал вопрос, как их трактовать. В самом деле, установить значение высказывания можно, попытавшись сказать то же самое другими словами, т. е. переведя одно высказывание в другое. Но тогда можно вновь задать вопрос о значении второго высказывания и т. д. Поскольку эту процедуру нужно где-то закончить, Мур стремился относить высказывания непосредственно к опыту. Вероятно, это он придумал термин «чувственные данные» (sens-data). Но тогда вставал новый вопрос: что такое чувственные данные? Если, например, мы анализируем предложение «это – чернильница» и хотим определить его значение, то как чувственные данные относятся к самой чернильнице?
Муру так и не удалось решить эти вопросы, но он их поставил – и тем самым способствовал возникновению мнения, что дело философии – прояснение, а не открытие; что она занимается значением, а не истиной, что ее предмет – наши мысли или язык, скорее, чем факты. По словам Б. Рассела, Мур оказал на него «освобождающее воздействие». Но именно Бертран Рассел (1872–1970) был одним из ученых, разработавших логическую технику, которой воспользовались неопозитивисты. К его работам восходит и идея сведения философии к логическому анализу. А пришел он к ней в результате исследований логических оснований математики и математической логики.
Дело в том, что в XIX в. математика переживала период чрезвычайно быстрого и в известном смысле революционного развития. Были сделаны фундаментальные открытия, перевернувшие многие привычные представления. Достаточно назвать создание неевклидовых геометрий Н. И. Лобачевским, Я. Больяйи, Б. Риманом; работы по теории функции К. Вейерштрасса, теорию множеств А. Г. Кантора. Одна из особенностей всех этих исследований состояла в том, что их результаты пришли в противоречие с чувственной очевидностью, с тем, что кажется интуитивно достоверным. Действительно, со времен Евклида все математики были убеждены в том, что через данную точку по отношению к данной прямой можно провести в той же плоскости только одну линию, параллельную данной. Лобачевский показал, что это не так, – правда, в итоге ему пришлось радикальным образом изменить геометрию.
Прежде математики считали, что к любой точке любой кривой линии можно провести касательные. Вейерштрасс дал уравнение такой кривой, по отношению к которой провести касательную невозможно. Наглядно мы даже не можем представить себе такую кривую, но теоретически, чисто логическим путем, можно исследовать ее свойства.
Всегда было принято считать, что целое больше части. Это положение казалось и математикам аксиомой и нередко приводилось как пример абсолютной истины. А. Г. Кантор показал, что в случае бесконечного множества это положение не работает. Например: 1 2 3 4 5 6 7… – натуральный ряд чисел, а 1 4 9 16 25 36 49… – ряд квадратов этих чисел. Оказалось, что квадратов чисел в бесконечном ряду столько же, сколько и натуральных чисел, так как под каждым натуральным числом можно подписать его вторую степень или каждое натуральное число можно возвести в квадрат. Поэтому Кантор определил бесконечное множество как имеющее части, содержащие столько же членов, как и все множество.
Эти открытия потребовали гораздо более глубокого исследования и обоснования логических основ математики. Несмотря на то что европейская математика, начиная с Евклида, весьма негативно относилась к чувственному опыту, – отсюда фундаментальное для математической науки требование логически доказывать даже то, что представляется самоочевидным, например что прямая линия, соединяющая две точки, короче любой кривой или ломаной линии, которая их тоже соединяет, – все-таки прежде математики охотно обращались к интуиции, к наглядному представлению, и не только неявно, при формулировании исходных определений и аксиом, но даже при доказательстве теорем (например, используя прием наложения одной фигуры на другую). Этим приемом часто пользовался Евклид. Теперь правомерность интуитивных представлений была подвергнута решительному сомнению. В итоге были обнаружены серьезные логические недостатки в «Началах» Евклида.
Кроме того, математика стала развиваться настолько быстро, что сами математики не успевали осмыслить и привести в систему собственные открытия. Часто они просто пользовались новыми методами, потому что те давали результаты, и не заботились об их строгом логическом обосновании. Когда время безудержного экспериментирования в математике прошло и математики попытались разобраться в основаниях своей науки, то оказалось, что в ней немало сомнительных понятий. Анализ бесконечно малых блестяще себя оправдал в практике вычислений, но что такое «бесконечно малая величина», никто толком сказать не мог. Больше того, оказалось, что определить сам предмет математики, указать, чем именно она занимается и чем должна заниматься, невероятно трудно. Старое традиционное определение математики как науки о количестве было признано неудовлетворительным. Тогда Ч. Пирс определил математику как «науку, которая выводит необходимые заключения», а Гамильтон и Морган – как «науку о чистом пространстве и времени». Дело кончилось тем, что Рассел заявил, что математика – это «доктрина, в которой мы никогда не знаем ни того, о чем говорим, ни верно ли то, что мы говорим».
Таким образом, во второй половине XIX в., и особенно к концу его, была осознана необходимость уточнить базовые понятия математики и прояснить ее логические основания.
Грандиозная попытка полного сведения чистой математики к логике была предпринята в «Principia Mathematica» («Начала математики» (1910–1913) А. Н. Уайтхеда и Б. Рассела, и книга эта в известном смысле стала естественным логическим завершением всего этого движения. Математика была, по существу, сведена к логике. Еще Г. Фреге положил начало так называемому логицизму, заявив, что математика – это ветвь логики.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
 https://sdvk.ru/ 

 где купить плитку в ванную