сунержа галант 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Если электрический вектор колеблется в одной плоскости, то это будет линейная поляризация. Но, этот вектор может и вращаться.
И оказалось, что синхротронное излучение обладает такими уникальными свойствами, что при определенных углах можно наблюдать циркулярную поляризацию или линейную поляризацию. В частности, если оно наблюдается очень близко к плоскости орбиты движения электронов, то там будет линейная поляризация, примерно где-то процентов 80.
В.М. По вопросу круговой поляризации в своё время была статья Виталия Иосифовича Гольданского. Он, кстати, был первым председателем комиссии по синхротронному излучению. И он предполагал, что круговая поляризация синхротронного излучения могла вызвать асимметричный синтез. А основа жизни - это асимметричный синтез, белки и сахара - это хиральные структуры. Я помню, он очень спешил её опубликовать и опубликовал в журнале «Коммунист», у меня этот журнал есть. Эта идея до сих пор бродит по миру. Я недавно рецензировал статью, в которой, как один из вариантов асимметричного синтеза, предполагается воздействие синхротронного излучения.
А.Г. Но для этого оно должно присутствовать в природе в гораздо большем масштабе…
В.М. Ну, конечно, здесь интенсивность очень небольшая. На Земле такого излучения не было во время зарождения жизни.
А.Г. Но это, кстати, довод в пользу теории панспермии: если где-то могла создаться ситуация, при которой было такое излучение, давшее асимметричный синтез…
В.М. Да, да. На самом деле, идея очень разумная, конечно, не глупая идея.
А.Г. Теперь мы подходим уже вплотную к ответу на вопрос, что от этого нашему колхозу и почему такое количество ученых занимается этим. Ведь это не только, как я понимаю, теория, это имеет и прикладное значение.
В.М. У всех подобных источников есть прикладное значение и даже промышленное.
На следующем рисунке приведена линейная поляризация для разных энергий, и круговая поляризация, которая достигает ста процентов. Например, чтобы исследовать дихроизм, очень легко переключить левую круговую поляризацию на правую. Но это подстрочное замечание.
Прежде чем мы двинемся дальше, одно замечание о развитии рентгеновских источников. Рентгеновское излучение было открыто в 1895 году. До 1963 года яркость этих источников практически не увеличивалась. Она стала увеличиваться, когда изобрели рентгеновские трубки с вращающимся анодом. А дальше - источники синхротронного излучения, вот какой рост. Синхротронный - в первом поколении. Дальше специализированные источники, это второе поколение. И третье поколение, о котором, если времени хватит, мы два слова скажем. За пол века увеличение яркости почти на 15 порядков. В настоящее время в Дубне строится машина третьего поколения. Там достигаются уже фантастические яркости. На следующем слайде - один из новейших источников синхротронного излучения в США. Здесь, помимо круговых орбит, в прямолинейные промежутки встроены устройства, которые специально искажают магнитное поле - ондуляторы. Справа внизу - излучение линейного ондулятора. Тут специально вносится искажение в магнитное поле с маленьким радиусом. А маленький радиус приводит к более жесткому излучению при той же энергии. Поэтому ондулятор был первым встроенным устройством. А если использовать длинный ондулятор, 1200 элементов периодичности, то там происходит эффект самоусиления, фактически фазировка на очень большом расстоянии, и получается когерентное рентгеновское излучение. Под строительство этого источника американцы получили деньги из программы СОИ. Потому что у этого длинного ондулятора получаются мгновенные мощности в гигаватты. То есть это сравнимо с мощностью всех электростанций страны.
А.Г. Такая рентгеновская пушка.
В.М. Да, рентгеновская пушка. Они испытывали ее, но это военное приложение, слава Богу, не понадобилось.
А вот другое, очень важное приложение. Из ондулятора можно сделать лазер на свободных электронах. Можно также из линейного ускорителя получить электроны, повернуть их в периодическое поле, и получится лазер на свободных электронах.
В.Х. Есть два типа лазеров. Есть лазер на связанных электронах, так сказать, обычный, где рабочим телом являются атомы, молекулы. И лазер на свободных электронах, такой термин тоже сейчас активно употребляется. С моей точки зрения, отличие состоит в следующем. В лазерах на связанных электронах, то есть в обычных лазерах, спектр энергий электронов строго дискретный.
И в принципе, там достаточно создать инверсную заселенность верхнего уровня энергии, а нижний уровень освободить, и далее пучком света определенной частоты можно сбросить все электроны с верхнего уровня на нижний, получается усиление…
А.Г. Накачка.
В.Х. «Накачать» - это возбудить электроны. В обычном состоянии, состоянии термодинамического равновесия заселены нижние уровни, то есть уровни с меньшей энергией. А чтобы получить усиление, необходимо создать инверсную заселенность, то есть населить электронами верхний уровень с большей энергией.
Тут уместно ещё сказать, что идея, собственно, принадлежит Эйнштейну. Ещё в 1917 году он высказал эту идею, о возможности вынужденных переходов электронов между состояниями в двухуровневой квантовой системе.
Что касается лазера на свободных электронах, то, с моей точки зрения, это практически те же самые системы, но они имеют квазинепрерывный спектр энергий. Почему свободные? По крайней мере, в одном направлении, если мы рассматриваем трёхмерное пространство, электроны в них движутся свободно, так как вдоль этого направления никакие силы на электроны не действуют. Дискретный спектр энергий зависит от какого-то дискретного квантового числа. Если же речь идет о движении в ондуляторах или в магнитном поле, то, например, вдоль магнитного поля электрон движется свободно, а спектр энергий электрона квазинепрерывен. И поэтому в лазере на свободных электронах расстояние между уровнями энергии мало. В лазере на связанных электронах оно велико, скажем между первым и вторым уровнем…
А.Г. Отсюда дискретность.
В.Х. Да, а здесь спектр энергий квазинепрерывен. Поэтому в лазере на свободных электронах всегда задействованы три уровня. И если вы даже создадите инверсную заселенность среднего уровня, а нижний станет пустым, то вынужденные переходы электронов возможны как на нижний, так и на верхний уровни. Однако здесь оказывается существенным так называемый эффект отдачи за счет излучения фотона. Когда фотон взаимодействует с электроном, последний переизлучает фотоны. Из-за того что спектр непрерывный, электрон чувствует любую отдачу при взаимодействии, хотя энергия и импульс фотона малы, в то время как при дискретном спектре он не получает отдачи. А здесь он чувствует даже маленькую отдачу. За счет этого задействованы три уровня. Игра идет на том, что уровни слабо неэквидистантны, частоты и вероятности переходов вниз и вверх чуть-чуть отличаются, так что в результате получается усиление падающего пучка фотонов.
Кроме того, можно дать такое определение: в отличие от лазеров на связанных электронах, лазеры на свободных электронах - это, как правило, устройства, в которых используются макроскопические электромагнитные поля. Скажем, электроны в накопителях движутся в макроскопическом магнитном поле.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
 сантехника подольск интернет магазин 

 Керамин Манчестер