https://www.dushevoi.ru/brands/Aquaton/valensiya/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Из знаков действий он использовал «+» и «-», знак радикала и горизонтальную черту для деления. Произведение обозначал словом «in». Виет первым стал применять скобки, которые, правда, у него имели вид не скобок, а черты над многочленом. Но многие знаки, введенные до него, он не использовал. Так, квадрат, куб и т. д. обозначал словами или первыми буквами слов.
Символика Виета позволила и решать конкретные задачи, и находить общие закономерности, полностью обосновывая их. Таким образом, алгебра выделались в самостоятельную ветвь математики, не зависящую от геометрии. «Это нововведение и особенно применение буквенных коэффициентов положило начало коренному перелому в развитии алгебры: только теперь стало возможным алгебраическое исчисление как система формул, как оперативный алгоритм».
Символики Виета придерживался впоследствии Пьер Ферма. Дальнейшее значительное усовершенствование алгебраической символики принадлежит Декарту. Рене Декарт ввел для обозначения коэффициентов строчные буквы латинского алфавита. Для обозначения неизвестных он использовал последние буквы того же алфавита. Это нововведение получило широкое распространение в работах математиков и с небольшими изменениями сохранилось до наших дней.
ЛОГАРИФМЫ
На всем протяжении XVI века быстро возрастало количество приближенных вычислений, прежде всего в астрономии. Исследование планетных движений требовало колоссальных расчетов. Астрономы просто могли утонуть в невыполнимых расчетах. Очевидные трудности возникали и в других областях, таких как финансовое и страховое дело. Основную трудность представляли умножение и деление многозначных чисел, особенно же тригонометрических величин.
Иногда для приведения умножения к более легкому сложению и вычитанию пользовались таблицами синусов и косинусов. Была также составлена таблица квадратов до 100 000, с помощью которой умножение можно было производить по определенному правилу.
Однако эти приемы не давали удовлетворительного решения вопроса. Его принесли с собой таблицы логарифмов.
«Открытие логарифмов опиралось на хорошо известные к концу XVI века свойства прогрессий, — пишут М.В. Чириков и А.П. Юшкевич. — Связь между членами геометрической профессии и арифметической прогрессией не раз отмечалась математиками, о ней говорилось еще в „Псаммите“ Архимеда. Другой предпосылкой было распространение понятия степени на отрицательные и дробные показатели, позволившее перенести только что упомянутую связь на более общий случай…
Многие… авторы указывали, что умножению, делению, возведению в степень и извлечению корня в геометрической прогрессии соответствуют в арифметической — в том же порядке — сложение, вычитание, умножение и деление. Здесь уже скрывалась идея логарифма числа как показателя степени, в которую нужно возвести данное основание, чтобы получить это число. Оставалось перенести знакомые свойства прогрессии с общим членом на любые действительные показатели. Это дало бы непрерывную показательную функцию, принимающую любые положительные значения, а также обратную ей логарифмическую. Но эту идею глубокого принципиального значения удалось развить через несколько десятков лет».
Логарифмы изобрели независимо друг от друга Непером и Бюрги лет на десять позднее. Их цель была одна — желание дать новое удобное средство арифметических вычислений. Подход же оказался разный. Непер кинематически выразил логарифмическую функцию, что позволило ему по существу вступить в почти неизведанную область теории функций. Бюрги остался на почве рассмотрения дискретных прогрессий. Надо заметить, что у обоих определение логарифма не походило на современное.
Первый изобретатель логарифмов — шотландский барон Джон Непер (1550–1617) получил образование на родине в Эдинбурге. Затем после путешествия по Германии, Франции и Испании, в возрасте двадцати одного года, он навсегда поселился в семейном поместье близ Эдинбурга. Непер занялся главным образом богословием и математикой, которую изучал по сочинениям Евклида, Архимеда, Региомонтана, Коперника.
«К открытию логарифмов, — отмечают Чириков и Юшкевич, — Непер пришел не позднее 1594 года, но лишь двадцать лет спустя опубликовал свое „Описание удивительной таблицы логарифмов“ (1614), содержавшее определение Неперовых логарифмов, их свойства и таблицы логарифмов синусов и косинусов от 0 до 90 градусов с интервалом в 1 минуту, а также разности этих логарифмов, дающие логарифмы тангенсов. Теоретические выводы и объяснения способа вычисления таблицы он изложил в другом труде, подготовленном, вероятно, до „Описания“, но изданном посмертно, в „Построении удивительной таблицы логарифмов“ (1619). Упомянем, что в обоих сочинениях Непер рассматривает и некоторые вопросы тригонометрии. Особенно известны удобные для логарифмирования „аналогии“, т. е. пропорции Непера, применяемые при решении сферических треугольников по двум сторонам и углу между ними, а также по двум углам и прилежащей к ним стороне.
Непер с самого начала вводил понятие логарифма для всех значений непрерывно меняющихся тригонометрических величин — синуса и косинуса. При тогдашнем состоянии математики, когда еще не было аналитического аппарата исчисления бесконечно малых, естественным и единственным средством для этого являлось кинематическое определение логарифма. Быть может, здесь не остались без влияния и традиции, восходившие к оксфордской школе XIV века».
В основе определения логарифма у Непера лежит кинематическая идея, обобщающая на непрерывные величины связь между геометрической профессией и арифметической прогрессией показателей ее членов.
Теорию логарифмов Непер изложил в сочинении «Построение удивительных таблиц логарифмов», посмертно опубликованном в 1619 году и переизданном в 1620 году его сыном Робертом Непером. Вот выдержки из нее:
«Таблица логарифмов — небольшая таблица, с помощью которой можно узнать посредством весьма легких вычислений все геометрические размеры и движения. Она по справедливости названа небольшой, ибо по объему превосходит таблицы синусов, весьма легкой, потому что с ее помощью избегают всех сложных умножений, делений и извлечений корня, и все вообще фигуры и движения измеряются посредством выполнения более легких сложения, вычитания и деления на два. Она составлена из чисел, следующих в непрерывной пропорции.
16. Если из полного синуса с добавленными семью нулями ты вычтешь его 10000000-ую часть, а из полученного таким образом числа — его 10000000-ую часть и так далее, то этот ряд можно легко продолжить до ста чисел в геометрическом отношении, существующем между полным синусом и синусом, меньшим его на единицу, а именно между 10000000 и 9999999, и этот ряд пропорциональных мы назовем Первой таблицей.
17. Вторая таблица следует от полного синуса с шестью добавленными нулями через пятьдесят других чисел, пропорционально убывающих в отношении, которое является простейшим и возможно более близким к отношению между первым и последним числами Первой таблицы.
Поскольку первое и последнее числа Первой таблицы суть 10000000.0000000 и 9999900.004950, то в этом отношении трудно образовать пятьдесят пропорциональных чисел. Близким и в то же время простым отношением является 100000 к 99999, которое можно с достаточной точностью продолжить, добавив к полному синусу шесть нулей и последовательно вычитая из предшествующего его 100000-ую часть.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
 мебель для ванной aqwella 

 Mainzu Bumpy