https://www.dushevoi.ru/products/mebel-dlja-vannoj/nedorogaya/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Нейрон — очень важная деталь мозга, неудивительно, что она одета в гораздо более прочную, чем другие клетки организма, оболочку, способную уберечь ее от многих неприятностей.
Все же извлечь из мозга нейрон в абсолютно не поврежденном виде пока не удается. Невозможно выплести из ткани ганглия тонюсенькие отростки нервной клетки. Они легко рвутся. Ученых очень беспокоил вопрос — как залечить или заделать дырки в местах обрыва отростков, чтобы вещество клетки не выливалось наружу, как льется вода из крана, если оставить его открытым? К счастью, опасения оказались необоснованными. Нервные клетки снабженым удивительным механизмом самовосстановления. Чуть только произошел обрыв отростка, оболочка на конце культи начинает сжиматься. Мгновенье-другое, и рана закрылась. Еще две-три секунды, и клетка полностью здорова. Можно приступать к изучению ее деятельности.
Чудеса на этом не кончились. В Киеве для нервной клетки удалось соорудить даже «тиски». Их конструкция предельно проста. В центре тонкой металлической пластинки высверливается микроскопический конусообразный канал. Его размер подбирается таким образом, чтобы верхнее, входное отверстие было чуть больше нейрона, а нижнее, выходное — чуть меньше. Готовой пластинкой перегораживают крохотный сосуд. В его верхнюю часть наливают специальный раствор, чтобы нервная клетка могла чувствовать себя нормально, и опускают туда нейрон, извлеченный из мозга улитки. Жидкость просачивается сквозь отверствие в перегородке — и в конце концов засосет в канал нейрон. Если его стенки предварительно смазать специальным клеем, а в арсенале ученых нашелся и он, то нервная клетка, попав в отверствие, прилипает к его стенкам и прочно закрепляется. Зажатый в «тисках» нейрон — прекрасный объект для исследования. В крупные клетки моллюсков удается одновременно ввести до пяти стеклянных электродов. Нейроны удивительно выносливы. Пронзенные несколькими электродами, они много часов проживут в питательном растворе и будут нормально работать.
Нейрон слишком сложный объект. Даже извлеченный из мозга и прочно закрепленный, пронзенный несколькими электродами, он продолжает хранить свои тайны. Исследование пошло бы быстрее, если бы и нейрон удалось разобрать на составные части. В первую очередь исследователям хотелось получить кусочек живой, полноценной, надежно закрепленной мембраны, чтобы ее было удобно исследовать.
Удалось осуществить и этот фантастический проект. Для изготовления препарата используют зажатый в «тисках» нейрон. Мы уже неоднократно сталкивались с тем, насколько прочна и устойчива его оболочка. Действительно прочна, но есть немало способов, на первый взгляд совсем безобидных, позволяющих ее повредить. Кальций — один из важных компонентов жизнедеятельности нейрона. Обработка нервной клетки раствором, не содержащим кальция, приводит к появлению в его оболочке множества ультрамикроскопических отверстий. В результате она превращается в мелкое сито, легко отсеивающее мелкие ионы натрия, калия, кальция, хлора. Значительно более крупные молекулы белков и других органических веществ пройти через эти отверстия не могут. Подготовленная таким образом клетка сохраняет все, что ей необходимо для жизни, хорошо себя чувствует и нормально функционирует.
Подготовить такой опыт не трудно. В нейрон, зажатый в «тисках», вводят нужное количество электродов, а мембрану, выступающую в нижний сосуд, обрабатывают бескальциевым раствором, превращая ее в сито. Теперь можно управлять составом солей внутри нейрона. Нервная клетка так мала, а отверстий в ее оболочке возникает так много, что если быстро сменить раствор в нижней части сосуда, так же быстро, почти мгновенно, изменится солевой состав и внутри клетки. Теперь, по желанию экспериментаторов, можно было создавать в протоплазме нейрона любую концентрацию ионов натрия, калия, кальция и хлора. В руках ученых фактически оказался кусочек оболочки нервной клетки, но кусочек вполне полноценный, сохранивший собственную протоплазму и ядро, по-прежнему окруженный заботами собственного «комбината бытовых услуг» и поддержкой собственного энергетического центра. Этот уникальный препарат и позволил изучить работу «электростанции» нейрона, выяснить, как мембрана генерирует ионные насосы и какова их роль в распространении нервного импульса. Как и окружающая Вселенная, микрокосмос нашего мозга оказался вполне доступным для изучения.
Посредник
Еще лет пятьдесят назад размеры нашей страны, тем более всей планеты, подавляли своей необъятностью. Сотрудники Аэрофлота справедливо утверждают, что развитие авиации сильно сократило расстояния. Для общения народов оно теперь не помеха. Трудность в другом — в языковом барьере. Сейчас на земле существует более двух с половиной тысяч языков — явное излишество для ставшей тесноватой планеты.
Многоязычие создает колоссальные трудности. Особенно страдают ученые, которым необходимо оперативно знакомиться с новой информацией, публикуемой их коллегами на своих родных языках. Чтобы как-то выйти из этого положения, европейские ученые раньше использовали латынь. Мертвый язык, на котором не говорил ни один народ, постепенно потерял свое значение. Время от времени делались попытки создать искусственный международный язык. Наибольшее распространение получил эсперанто.
Ни один из искусственных языков пока не завоевал всеобщего признания, и языковой барьер до сих пор вносит в работу международных организаций колоссальные трудности. Этот барьер пытаются преодолеть разными путями. Особенно трудно малым странам. Хотя датский язык принят в руководящих органах Европейского экономического сообщества, на международной арене датчанам редко приходится сталкиваться с людьми, владеющими их родным языком. Неудивительно, что продолжаются настойчивые попытки «перепрыгнуть» через барьер. Дело дошло до того, что датская газета «Политикен» выступила инициатором широкой дискуссии о переходе датчан на… английский язык.
Перед клетками мозга стоят те же проблемы — расстояние и взаимопонимание. Первая проблема, как мы уже видели, решается просто. Длинные отростки нервных клеток — аксоны дотягиваются до любых районов мозга. Сложнее со взаимопониманием. Два нейрона — два самостоятельных государства. Природа должна была изобрести механизм, позволяющий одному нейрону, получившему заслуживающую внимания информацию, не только довести ее до сведения других нейронов мозга, но и добиться того, чтобы они на нее отреагировали.
Немало усилий пришлось затратить ученым, чтобы выяснить как общаются между собой нейроны. Уже давно было известно, что по отросткам нервных клеток, как по телеграфным проводам, бегут биоэлектрические импульсы. Физиологи подозревали, что этот импульс, дойдя до синапса — места, где отросток одной нервной клетки касается отростка или тела другой нервной клетки, вызывает в соседнем нейроне ответную электрическую реакцию. Такой путь перехода возбуждения с нейрона на нейрон действительно существует у примитивных животных, и соответствующие синапсы даже получили название электрических. Однако у человека дело обстоит значительно сложнее.
«Выведать» механизм общения нейронов, как ни странно, помогли американские индейцы.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 дорогая сантехника для ванной 

 Cotto Russo Минима